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of a turbulent stream for large wave numbers in [3], we assumed, in fact, that the disper- 
sions of the straining rate tensor in the I~agrangian and Eulerian descriptions were the 
same. We have now proved this fact. 

A simple transformation of (4) yields the following expression for the relative motion 
of fluid particles in a homogeneous stream : 

I 
’ W, (t, r, u j rO) d3ro= IIg (t, r, u) (11) 

Here II’, is the combined density of the distributions of the velocity difference and 

of the distance between fluid particles initially separated by the distance rO; Ilk is the 

density of the velocity difference distribution at two fixed points the distance r apart. 
Formula (4) can also be used to obtain several other new relations. 
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In oontrast to three-dimensional motions, two-dimensional motions have not only the 
usual energy integral, but also an integral of motion which is quadratic in the velocity, 

namely the square of the curl of the velocity field. As is shown in [l, 21, this fact ensures 
the existence of a solution of the hydrodynamics equations with a normal (Gaussian) dis- 
tribution of the velocity field probabilities with a spectrum different from white noise. 

Our purpose in the present paper is to determine the characteristic of such a distribu- 

tion, i.e. the correlation (structural) function of the fields under investigation, directly 
from the hydrodynamics equations. 

Let us consider the two-dimensional motion of an incompressible inviscid turbulent 
fluid in the xy-plane. We assume that the turbulence is stationary in time and homo- 
geneous and isotropic in space. The motion of the fluid is described by the stream func- 
tion $ (r, t) which satisfies the equation 

Here (q, $) are the Poisson brackets and A is the two-dimensional Laplacian. The 
velocity field is defined by the vector (.-- w / a~, ag / 8~). 



On the statfc theory of two-dimensional tutbulence 865 

In accordance with the results of [l, Z’fwe assume that the field of the stream function 

Ip (r, t) is random and normally distributed. Averaging Eq. (1) over the ensemble of tur- 
bulent motions, we obtain 

<(AY, YY) > = 0 (2) 

Since the field Y (r, t) of the stream function has been determined to within an addi- 
tive constant, the statistical characteristic of the field Y is its structural function 

DJI’l - r2 I) = ([UT (rlt) - Y (r2, t)l"> (3) 

Let us consider the product ofthree Y-functions taken at a single instant but at differ- 
ent points in space. By virtue of stationarity, 

iJ i dt <AY fh, t) AY (r2, t) AY (r2, tf, = 0 14 

Making use of Eqs. (l),( 3), we readily obtain a functional equation for the snuctural 
function D +, i. e. 

X (11, **+ XPZ, P%$. Xi&. I?,= O (5) 

X 41, PP = &- 8% [AqtD+ (d A$4 (92) - Aq:DJ, (e.) Aq,D+ (all (f9 

Here ql, 92, qs (qt = 1 qi 1) are the vectors defined by the relations 

PI=: rl--Pp, q2=r2--3, q3=r3-rr (Q-Jrq2+qs=O) 

In deriving Eq. (5) we made use of the normal character of the distribution of the 

field Y (the average of the product of four Y-functions is equal to the sum of the ave- 
rages of ail possible pairs of Y-functions). 

Expression (6) implies that 
X qr,e*= - Xqe, QI (7) 

Condition (7) enables us to solve functional equation (5). Its solution is of the form 

X 9,, q2= 4 (91) - .4 (42) (8) 

Here A (q) is an arbitrary function. Multiplying (8) by qlq2 and applying the operator 
a4 / aq12 892, we obtain the following differential equation for the structural function 

D+ (d: P 
~ IAqlaDJ, (qr) AqlD+ (42) - A$D+ (42) A,$+, (qr)l = 6 
w+a(l,2 (9) 

We can solve Eq. (9) by separating variables, Making use of the condition AD+ (n) + 0 
as q -, o=, we obtain (A + h)AD+ (rl) = 0 ($0) 

Here h is the separation constant which has the dimensions of the square of inverse 

length. 

In solving Eq. (10) we must deal with the two cases corresponding to the values 

h >o (h = k,2), h < 0, (a = - k,?) 

In the first case the solution of (10) for AD, is 

AD,,, (q! = CJ, (k,q) (ii) 

Here J, (z) is a Bessel function. The quantity AD, (9) determines the structural func- 
tion of the velocity field and therefore the spectral energy density, which in OLU case is 

given by E (k) = E,6 (k - k,) ($2) 

This corresponds to a discrete spectrum. 
In the second (more interest~g) case we obtain the following solution for AD, which 

decays rapidly with increasing q : 
AD, (4 = - Cx ka2fb fq 1 Lo) fi3) 

where Ic, (x) 1s a Macdonald function and the quantities L, = k,-1 and C2 are dimen- 



sional constants which arise in the theory. The spectral energy density corresponding to 
(13) is of the form 

E (k) = /+?& (ii) 

The behavior of this spectral density is characterized by the logarithmic divergence 
of the average kinetic energy density. This divergence is due to the absence of viscosity 
in the problem under consideration. 

Carrying out bivariate Fourier transformation in formula (13), we obtain the following 
expression for the bivariate spectrum of the stream function field : 

This coincides with the result of [I& The expression for the structural function U, 
itself can be obtained by integrating Eq. (I. 3) 

d6 
under the conditions D+ (9) = 0, ljJ, (0) = 0 

f.2 
D+ (Q) = Cl [X6 (Q/-G) + ln 

. 
&+r] (16) 

where y z 0.53 is Euler’s constant. A distinctive 
88 feature of the behavior of D+(q) is the absence 

6.4 
of a second derivative at zero. Fig. 1 shows 
fl+ fsf i Cl as a function of the dimensionless 

length g =I Q i f,, e 
f 2 3 4 5 Out assumption that the field of +I fr, tj is dis- 

tributed normafiy is not necessary, All of our 

Fig, 1 
results remain valid for a quasinormal distribution 
(the hypothesis of f3]), although the resulting solu- 

tion may not be unique. We also infer from the results of [4, 5] that the spectral energy 
density in the analogous three-dimensional problem turns out to be that of white noise, 

which is of no physical interest. 

The author is grateful to A. M. Obukhov for suggesting the subject of the present paper 
and for his comments on the results. 
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